AP Calculus Pretest Number 2 Derivatives Test

Na	me	Date
1.	If $f(x) = \cos^4 x$, then $f'(\frac{\pi}{3}) =$ a) $-\frac{\sqrt{3}}{4}$ b) 2 c) $\frac{1}{2}$ d) $\frac{4}{\sqrt{3}}$ e) $\frac{\sqrt{3}}{2}$	5. A function f is defined by $f(x) = \frac{e^{2x} - e^{-x}}{e^x + e^{-2x}}$. Find f'(0). a) $-\frac{2}{3}$ b) $2e - 1$ c) e d) $\frac{3}{2}$ e) $-\frac{3}{2}$
2.	If $f(x) = \pi - \sin x + (\pi x)$, then $f'(\pi) =$ a) $\frac{\pi}{2}$ b) $\frac{4}{\pi}$ c) $\pi + 1$ d) $\pi - 1$ e) 2π	6. Given $f(x) = e^{\sqrt{2x}}$, find $f'(2)$. a) e^2 b) $2e$ c) $\frac{e^2}{4}$ d) $\frac{1}{e}$ e) $\frac{e^2}{2}$
3.	Differentiate: $\frac{1 + \cos x}{1 - \cos x}$ a) -1 b) $-2 \csc x$ c) $2 \csc x$ d) $\frac{-2 \sin x}{(1 - \cos x)^2}$ e) $\frac{-\sin^2 x}{(1 + \cos x)^2}$	7. Given $f(5) = 4$, $f'(5) = 2$, $g(5) = 6$, and $g'(5) = -7$. Find $h'(5)$ if $h(x) = f(x) \times g(x)$. a) -16 b) 40 c) -50 d) 50 e) 14
4.	If $y = \ln \frac{5-x}{5+x}$, then $\frac{dy}{dx} =$ a) $\frac{10}{x^2-25}$ b) $\frac{10}{x^2+25}$ c) $\frac{5}{x^2-25}$ d) $\frac{5}{x^2+25}$ e) $\frac{10}{x^2-10}$	 8. The point (-4, 2√3) lies on the graph of y = √x² - 4. Find the slope of the line tangent to the curve at that point. a) -2√3/3 b) 4 c) 2√3/3 d) 4√3/3 e) 4√3

AP Calculus Pretest Number 2 Derivatives Test

Name _

9. Let $f(x) = \tan x$ for $0 \le x \le 2\pi$, and let $g(x) = \ln x$ for all x > 0. Let S be the composition of g with f, S(x) = g(f(x)). Find the slope of the tangent to the graph of S at $x = \frac{\pi}{4}$.

a) 1 b) 2 c)
$$2\pi$$
 d) $\frac{1}{\sqrt{2}}$ e) $\sqrt{3}$

- 10. The graph of $f(x) = \frac{-5x^2}{7+x^2}$ has a horizontal tangent at y =
 - a) -5 b) 5 c) $\sqrt{7}$ d) $-\sqrt{7}$ e) 0
- 11. The x coordinate(s) of the point(s) on the graph of $f(x) = (x)^{2/3}(x^2 27)$ where vertical tangent(s) exist are
 - a) -3 only b) 0 only c) 3 only
 - d) 27 only e) 9, -3
- 12. Find an equation of the tangent line to the curve $y = \ln (x 3)$ at the point where the curve intersects the x-axis.
 - a) y = x + 4 b) y = x 4 c) y = x 3d) y = x + 3 e) y = 3x

- 13. Given a curve defined by the equation $f(x) = (1 + \ln x)^2$, find $f''(e^2)$.
 - a) e^2 b) 0 c) $4e^2$ d) $-4e^{-4}$ e) $-4e^2$

Date _

14. Differentiate: $f(x) = \tan^{-1}\left(\frac{x}{7}\right)$

a)
$$\frac{7}{x^2 + 49}$$
 b) $\frac{7}{x^2 - 49}$ c) $-\frac{7}{x^2 - 49}$
d) $-\frac{7}{x^2 + 49}$ e) $\frac{1}{7}$

- 15. Find f'(x) given $f(x) = \cos^4(3x)$.
 - a) $4\cos^3(3x)$ b) $-12\sin 3x\cos^3(3x)$
 - c) $-4\cos^3(3x)$ d) $12\sin^3 3x\cos(3x)$
 - e) $12\cos^2(3x)$

Name _

- 16. If $y = -3(\cos^2 x + \sin^2 x)^4$, then the first derivative of y is
 - a) -3
 - b) $-12(\cos^2 x + \sin^2 x)^3$
 - c) $12(\cos^2 x + \sin^2 x)^3(2\cos x + 2\sin x)$
 - d) $-12\cos 4x$
 - e) 0

17. What is the slope of the tangent line to $3xy - 5\ln 4x = \frac{3}{4}$ at the point $(\frac{1}{4}, 1)$?

a)
$$\frac{68}{3}$$
 b) $-\frac{68}{3}$ c) $-\frac{92}{3}$ d) $\frac{3}{92}$ e) -17

18. A rectangle has a fixed area of 100 units² and its length L is increasing at 2 units/sec. Find the length L at the instant the width is decreasing at 0.5 units/sec.

Date $_$

19. A spherical balloon is inflated at the rate of six cubic feet per minute. At what rate is the radius changing when r = 18 in?

a)
$$\frac{1}{4\pi}$$
 in/min b) $\frac{2}{\pi}$ in/min c) $\frac{2\pi}{3}$ in/min
d) $\frac{3}{2\pi}$ in/min e) $\frac{2}{3\pi}$ ft/min

20. Sand is falling of a conveyor onto a conical pile at the rate of 20 feet³ per minute. The diameter of the base of the cone is four times the altitude. At what rate is the height of the pile changing when it is 8 feet high?

a)
$$\frac{5}{64\pi}$$
 ft/min b) $\frac{64}{5\pi}$ ft/min c) $\frac{5}{16\pi}$ ft/min
d) $\frac{16\pi}{5}$ ft/min e) $\frac{5}{24\pi}$ ft/min

21. What is $\lim_{h \to 0} \frac{\sqrt[3]{27+h} - \sqrt[3]{27}}{h}$? a) $\frac{1}{27}$ b) $\frac{1}{9}$ c) $\frac{1}{81}$ d) $\frac{1}{3}$ e) 0

AP Calculus Pretest Number 2 Derivatives Test

Name			

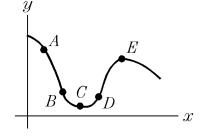
The functions f and g are differentiable and have 22.the values shown in the table.

If
$$A = f(g(x))$$
 then $A'(-6) =$

a) 0 b) -54 d) 108 c) 99

e)	72

x	f	f'	g	g'
-8	4	3	-2	6
-6	10	12	0	9
-2	20	9	6	18
0	30	11	12	24


24. If $y = e^{\ln(\sin x)}$, then $\frac{dy}{dx} =$

b) $\ln x$ a) $\ln(\cos x)$ c) $\cos x$

Date _

e) $\frac{\sin x}{\ln x}$ $\frac{\cos x}{\ln x}$ d)

- 23. At which of the five points shown on the graph is $\frac{dy}{dx}$ negative? Choose the *best* answer.
 - a) A and B
 - b) B only
 - c) C only
 - d) C, D, and E
 - e) D only

25. Let $y^2 e^{2x} + 3x = y^3$. Find y'.

a)
$$\frac{2y^2 e^{2x} + 3}{3y^2 - 2ye^{2x}}$$
 b) $\frac{e^{2x} - 3}{4}$ c) $\frac{ye^{2x} + 3}{y - e^{2x}}$
d) $\frac{1 - 3y}{e^{2x}(3 - 2y)}$ e) $\frac{e^{2x} - 3y}{e^{2x} - y^2}$

$\begin{array}{c} Acces \ {\bf format} \ version \ {\bf 4.4.11} \\ \textcircled{O} \ 1997{-}2007 \ {\rm EducAide} \ {\rm Software} \\ {\rm Licensed} \ {\rm for} \ {\rm use} \ {\rm by} \ {\rm New} \ {\rm Town} \ {\rm High} \ {\rm School} \end{array}$

			- , ,
1. Answer: CodePath:	a EAS.APC.E.B.9	15. Answer: CodePath:	b EAS.APC.E.F.34
	c EAS.APC.E.B.13	16. Answer: CodePath:	e EAS.APC.E.F.48
3. Answer: CodePath:	d EAS.APC.E.B.21	17. Answer: CodePath:	a EAS.APC.E.G.24
4. Answer: CodePath:	a EAS.APC.E.B.36	18. Answer: CodePath:	c EAS.APC.E.J.41
5. Answer: CodePath:	d EAS.APC.E.B.46	19. Answer: CodePath:	e EAS.APC.E.J.46
6. Answer: CodePath:	e EAS.APC.E.B.47	20. Answer: CodePath:	a EAS.APC.E.J.52
7. Answer: CodePath:	a EAS.APC.E.B.64	21. Answer: CodePath:	a EAS.APC.D.A.19
8. Answer: CodePath:	a EAS.APC.E.C.14	22. Answer: CodePath:	c EAS.APC.D.B.22
9. Answer: CodePath:	b EAS.APC.E.C.18	23. Answer:	a EAS.APC.D.D.4
10. Answer: CodePath:	e EAS.APC.E.C.20	24. Answer: CodePath:	с
11. Answer: CodePath:	b EAS.APC.E.C.35	25. Answer: CodePath:	a EAS.APC.D.N.58
12. Answer: CodePath:	b EAS.APC.E.C.42		
13. Answer: CodePath:	d EAS.APC.E.D.30		
14. Answer:			

CodePath:

EAS.APC.E.E.26