Exponential and Logarithmic Functions Practice Exam

Math 30-1: Exponential and Logarithmic Functions PRACTICE EXAM

1. All of the following are exponential functions except:

A.
$$y = \left(\frac{1}{2}\right)^{x}$$

B. $y = 1^{x}$
C. $y = 2^{x}$

The point (-3, n) exists on the exponential graph shown. 2. The value of n is:

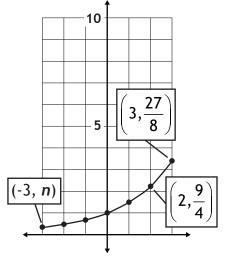
A.
$$-\frac{8}{27}$$

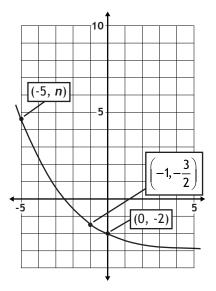
B. $\frac{8}{27}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

3. The graph of
$$y = \left(\frac{1}{2}\right)^{x+3} - 2$$
 has:

- **A.** A vertical asymptote at x = -3
- **B.** A horizontal asymptote at x = -3
- **C.** A vertical asymptote at y = -2
- **D.** A horizontal asymptote at y = -2
- The point (-5, n) exists on the exponential graph shown. 4. If the function has the form $y = ab^x + k$, the value of n is:
 - 16 81 Α. 81 16 Β.

 - C. $\frac{32}{147}$
 - D. $\frac{147}{32}$





5. If the graph of $y = \left(\frac{1}{3}\right)^x$ is stretched vertically so it passes through the point $\left(2, \frac{1}{12}\right)$, the equation of the transformed graph is:

A.
$$y = \frac{3}{4} \left(\frac{1}{3}\right)^{x}$$

B. $y = \frac{4}{3} \left(\frac{1}{3}\right)^{x}$
C. $y = \frac{3^{x+1}}{4}$
D. $y = 4(3)^{1-x}$

- 6. The function $y = 25(5)^x$ has the same graph as:
 - A. $y = 5^{x+2}$ B. $y = 5^{x+3}$ C. $y = \left(\frac{1}{5}\right)^{2x}$ D. $y = \left(\frac{1}{5}\right)^{3x}$
- 7. The solution of $x^{-\frac{3}{5}} = 27$ is:

A.
$$x = \frac{1}{243}$$

B. $x = \frac{1}{81}$
C. $x = \frac{27}{81}$
D. $x = \frac{2}{3}$
8. If $27^{2m-n} = \frac{1}{9}$ and $49^{3m-2n} = 7$, the values of *m* and *n* are:
A. $m = -2$; $n = 1$
B. $m = 1$; $n = -2$
C. $m = -3$; $n = -\frac{11}{4}$

 $D. \quad m = -\frac{11}{6}; \ n = -3$

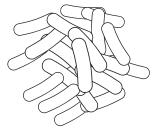
- 9. The solution of $16^{3x} = (2^{5x+2})(8^{2x})$ is:
 - A. x = 1
 B. x = 2
 C. x = 3
 D. x = 4
- **10.** The solution of $5^x = 125\sqrt{5}$ is:
 - A. $x = \frac{1}{2}$ B. $x = \frac{3}{2}$ C. $x = \frac{5}{2}$ D. $x = \frac{7}{2}$

11. The solution of $4^{2x} - 6(4)^{x} + 8 = 0$ is:

- A. $x = \frac{1}{2}$ B. x = 1C. $x = \frac{1}{2}, 1$ D. $x = -\frac{1}{2}, 3$
- **12.** The solution of $2^{x+3} + 2^{x+4} = 96$ is:
 - A. x = 1
 B. x = 2
 C. x = 3
 D. x = 4

- 13. A 90 mg sample of a radioactive isotope has a half-life of 5 years. A function that relates the mass of the sample, m, to the elapsed time, t, is:
 - A. $m(t) = 5(90)^{\frac{1}{2}}$ B. $m(t) = 90(5)^{t}$ C. $m(t) = 90\left(\frac{1}{2}\right)^{\frac{t}{5}}$ D. $m(t) = 5\left(\frac{1}{2}\right)^{\frac{t}{90}}$

- 14. A bacterial culture contains 800 bacteria initially and doubles every 90 minutes. The quantity of bacteria that exists in the culture after 8 hours is:
 - **A.** 851
 - **B.** 6400
 - **C.** 32254
 - **D.** 72000
- **15.** A computer that cost \$2500 in 1990 depreciated at a rate of 30% per year. How much was the computer worth four years after it was purchased?
 - **A.** \$20.25
 - **B.** \$187.5
 - **C.** \$600
 - **D.** \$750
- **16.** \$500 is placed in a savings account with an annual interest rate of 2.5%. The amount of the investment in 5 years if compounding occurs monthly is:
 - **A.** \$565.70
 - **B.** \$566.14
 - **C.** \$566.50
 - **D.** \$566.57



17. The equation $2 = \log_{x+1}(y+1)$ can be written as:

A.
$$y = \frac{2}{\log_{x+1}} - 2$$

B. $y = (x+1)^2 - 1$
C. $y = 2(x+1) - 1$
D. $y = \log_{x+1} 2 - 1$

- **18.** The product $(\log_a x)(\log_x b)$ can be written as:
 - A. $\log_a b$
 - **B.** $\log_b a$
 - C. $\log_{ax}(xb)$
 - **D.** $\log_a x + \log_x b$
- **19.** The expression $\log 2 + \log x \log(x+3)$ can be written as:

A.
$$\log 2 - \log 3$$

B. $\log \left(\frac{3}{2}\right)$
C. $\log \left(\frac{2x}{x+3}\right)$
D. $\log \left(\frac{2+x}{3x}\right)$

20. The expression $\log_a \left(\sqrt{a}\right)^k$ can be written as:

A.
$$k \log_a \left(\frac{a}{2}\right)$$

B. 2*k*

C.
$$\frac{k}{2} \log_a\left(\frac{a}{2}\right)$$

D. $\frac{k}{2}$

- **21.** If $\log_{b} 4 = k$, then $\log_{b} 16$ is equivalent to:
 - **A.** 2k
 - **B.** k^2
 - **C.** 4k
 - **D.** k^4

22. The expression $3 + \log_2 x$ can be written as the single logarithm:

- A. $3\log_2 x$
- **B.** $\log_2 x^3$
- **C.** $\log_2(8x)$
- **D.** $\log_2(9x)$
- **23.** The equation $3^x = 4$ has the solution:
 - A. $x = \frac{4}{3}$ B. $x = \log_3 4$ C. $x = \log_4 3$ D. $x = \log\left(\frac{4}{3}\right)$
- **24.** The equation $2 \times 5^{x+2} = 7$ has the solution:

A.
$$x = 1$$

B. $x = \log_5\left(\frac{7}{2}\right)$
C. $x = \log_5\left(\frac{7}{2}\right) - 2$
D. $x = \log_7\left(\frac{5}{2}\right) - 2$

25. The equation $2^{x+3} = 3^{2x-1}$ has the solution:

A.
$$x = \frac{-\log 3 - 3\log 2}{\log 2 - 2\log 3}$$

B. $x = \frac{2}{3}$
C. $x = 1$

- D. No Solution
- **26.** The equation $\log_3 x \log_3 2 = \log_3 7$ has the solution:
 - A. x = 8
 B. x = 9
 C. x = 11
 D. x = 14
- **27.** The equation $\log_2 x + \log_2 (x + 2) = 3$ has the solution:
 - A. x = 2 B. x = -4, 2 C. x = 3 D. x = 2, 3
- **28.** The equation $(\log x)^2 4\log x 5 = 0$ has the solution:

A.
$$x = \frac{1}{10}$$

B. $x = \frac{1}{10}$,100000

- **C.** *x* = 1000
- **D.** No Solution

- 29. The expression $\log_{\frac{1}{5}}\left(\frac{1}{x}\right)$ is equivalent to: A. $-\log_5 x$ B. $\log_5 x$ C. $\log\left(\frac{x}{5}\right)$ D. $\log(5x)$
- **30.** The expression $\log_9(\log_2 8)$ is equivalent to:

Α.	<u>1</u> 8
B.	<u>1</u> 4
C.	<u>1</u> 2
D.	2 3

- **31.** The equation $\log_{\sqrt{2}} x^4 + 4 = 12$ has the solution:
 - **A.** 2
 - **B.** 4
 - **C.** 8
 - **D.** 16
- **32.** The expression $4\log a \frac{1}{2}\log b + \log c$ is equivalent to:

A.
$$\log\left(\frac{a^4\sqrt{b}}{c}\right)$$

B. $\log\left(\frac{a^4c}{\sqrt{b}}\right)$
C. $\log\left(\frac{4ac}{\sqrt{b}}\right)$
D. $\log\left(\frac{8ac}{b}\right)$

- **33.** The graphs of $y = 3^x$ and $y = \log_3 x$ are:
 - A. Reflected across the line y = 0.
 - **B.** Reflected across the line x = 0.
 - **C.** Reflected across the line y = x.
 - D. Identical.
- **34.** The graph of $y = 2\log_2(2x+6)-1$ has:
 - A. A horizontal asymptote at y = -1
 - **B.** A horizontal asymptote at y = 1
 - **C.** A vertical asymptote at x = -6
 - **D.** A vertical asymptote at x = -3
- **35.** The graph of $y = \log_2 \sqrt{x}$ is the same as:
 - **A.** The graph of $y = \log_2 x$ with a vertical stretch by a scale factor of $\frac{1}{2}$.
 - **B.** The graph of $y = \log_2 x$ with a vertical stretch by a scale factor of 2.
 - **C.** The graph of $y = \log_2 x$.
 - **D.** A vertical asymptote at x = -3
- **36.** The graph of $y = \log_3(x^2 4) \log_3(x 2)$ has a domain and range of:
 - **A.** D: $\{x \mid x > 2, x \in R\}$; R: $\{y \mid y > \log_3 4, y \in R\}$
 - **B.** D: $\{x \mid x \ge 2, x \in R\}$; R: $\{y \mid y \ge \log_3 4, y \in R\}$
 - **C.** D: $\{x \mid x \ge 2, x \in R\}$; R: $\{y \mid y \ge 0, y \in R\}$
 - **D.** D: $\{x | x \in R\}$; R: $\{y | y > y \in R\}$
- **37.** If the graph of $y = \log_b x$ passes through the point (8, 2), the value of b is:
 - **A.** 2
 - **B.** 2√2
 - **C.** $2\sqrt{3}$
 - **D.** 10

- **38.** The graph of $y = \log_3 x$ can be transformed to the graph of $y = \log_3(9x)$ by either a stretch or a translation. The two transformation equations are:
 - A. y = f(9x) or y = f(x) 1
 B. y = f(9x) or y = f(x) + 1
 C. y = f(9x) or y = f(x) + 2
 D. y = f(9x) or y = f(x) + 3
- **39.** If the point (4, 1) exists on the graph of $y = \log_4 x$, what is the point after the transformation $y = \log_4(2x + 6)$?
 - **A.** (-4, 1)
 - **B.** (-2, -1)
 - **C.** (-1, 1)
 - **D.** (0, 2)

40. The equation of the reflection line for the graphs of $f(x) = b^x$ and $g(x) = \left(\frac{1}{b}\right)^x$ is:

- A. x = 0
 B. y = 0
 C. y = x
 D. y = b
- **41.** The inverse of $f(x) = 3^x + 4$ is:
 - A. $f^{-1}(x) = \log_3(x-4)$ B. $f^{-1}(x) = \log_4(x-3)$ C. $f^{-1}(x) = 4^x + 3$ D. $f^{-1}(x) = -3^x - 4$
- **42.** If the point (k, 3) exists on the inverse of $y = 2^x$, the value of k is:

A. 2
B. 3
C. 4
D. 8

43. Earthquakes can be analyzed with the formula:

$$M_2 - M_1 = \log \frac{A_2}{A_1}$$

where M is the magnitude of the earthquake (unitless), and A is the seismograph amplitude of the earthquake being measured (m).

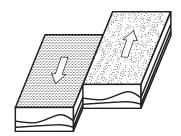
The magnitude of an earthquake with triple the seismograph amplitude of a magnitude 5.0 earthquake is?

- **A.** 5.5
- **B.** 8.2
- **C.** 9.0
- **D.** 15.0
- 44. Sound intensity can be analyzed with the formula:
 - $\boxed{\frac{I_2}{I_1} = 10^{\frac{L_2 L_1}{10}}}$

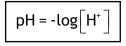
where I is the intensity of the sound being measured (W/m^2), and L is the perceived loudness of the sound (dB).

How many times more intense is a 40 dB sound than a 20 dB sound?

- **A.** 2
- **B.** 20
- **C.** 100
- **D.** 1000



45. The pH of a solution can be measured with the formula



where $[H^+]$ is the concentration of hydrogen ions in the solution (mol/L). Solutions with a pH less than 7 are acidic, and solutions with a pH greater than 7 are basic.

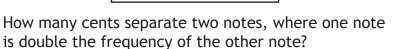
A formula that can be used to compare two acids is:

A.
$$\frac{\left[H^{+}\right]_{2}}{\left[H^{+}\right]_{1}} = 10^{pH_{2}-pH_{1}}$$

B. $\frac{\left[H^{+}\right]_{2}}{\left[H^{+}\right]_{1}} = 10^{-(pH_{2}-pH_{1})}$
C. $pH_{2} - pH_{1} = -\log \frac{\left[H^{+}\right]_{1}}{\left[H^{+}\right]_{2}}$
D. $pH_{2} - pH_{1} = \log \frac{\left[H^{+}\right]_{2}}{\left[H^{+}\right]_{1}}$

46. In music, a chromatic scale divides an octave into 12 equally-spaced pitches. An octave contains 1200 cents (*a unit of measure for musical intervals*), and each pitch in the chromatic scale is 100 cents apart. The relationship between cents and note frequency is given by the formula:

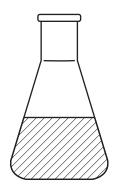
$$c_2 - c_1 = 1200 \left(\log_2 \frac{f_2}{f_1} \right)$$



A. 2

B. 100

- **C.** 200
- **D.** 1200



Exponential and Logarithmic Functions Practice Exam - ANSWER KEY Video solutions are in italics.

- 1. B Exponential Functions, Example 1
- 2. B Exponential Functions, Example 2b
- 3. D Exponential Functions, Example 4b
- 4. D Exponential Functions, Example 5a
- 5. A Exponential Functions, Example 6c
- 6. A Exponential Functions, Example 6f (i)
- 7. A Exponential Functions, Example 7c
- 8. D Exponential Functions, Example 8f
- 9. B Exponential Functions, Example 11b
- 10. D Exponential Functions, Example 12b
- 11. C Exponential Functions, Example 13a
- 12. B Exponential Functions, Example 13c
- 13. C Exponential Functions, Example 15a
- 14. C Exponential Functions, Example 16 (a, b)
- 15. C Exponential Functions, Example 17b
- 16. C Exponential Functions, Example 19e
- 17. B Laws of Logarithms, Example 3g
- 18. A Laws of Logarithms, Example 5h
- 19. C Laws of Logarithms, Example 7h
- 20. D Laws of Logarithms, Example 9h
- 21. A Laws of Logarithms, Example 10c
- 22. C Laws of Logarithms, Example 10h
- 23. B Laws of Logarithms, Example 11a

- 24. C Laws of Logarithms, Example 11c
- 25. A Laws of Logarithms, Example 12b
- 26. D Laws of Logarithms, Example 13d
- 27. A Laws of Logarithms, Example 14a
- 28. B Laws of Logarithms, Example 15c
- 29. B Laws of Logarithms, Example 16f
- 30. C Laws of Logarithms, Example 18f
- 31. A Laws of Logarithms, Example 19c
- 32. B Laws of Logarithms, Example 20g
- 33. C Logarithmic Functions, Example 2a
- 34. D Logarithmic Functions, Example 5c
- 35. A Logarithmic Functions, Example 6a
- 36. A Logarithmic Functions, Example 6c
- 37. B Logarithmic Functions, Example 9a
- 38. C Logarithmic Functions, Example 10a
- 39. C Logarithmic Functions, Example 10b
- 40. A Logarithmic Functions, Example 11a
- 41. A Logarithmic Functions, Example 11c
- 42. D Logarithmic Functions, Example 11e
- 43. A Logarithmic Functions, Example 12g
- 44. C Logarithmic Functions, Example 13e
- 45. B Logarithmic Functions, Example 14d
- 46. D Logarithmic Functions, Example 15c

Math 30-1 Practice Exam: Tips for Students

• Every question in the practice exam has already been covered in the Math 30-1 workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.

• Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.