201-103-RE - Calculus 1

WORKSHEET: DEFINITION OF THE DERIVATIVE

1. For each function given below, calculate the **derivative at a point** f'(a) using the limit definition.

(a)
$$f(x) = 2x^2 - 3x$$
 $f'(0) = ?$

(b)
$$f(x) = \sqrt{2x+1}$$
 $f'(4) =?$

(c)
$$f(x) = \frac{1}{x-2}$$
 $f'(3) =?$

2. For each function f(x) given below, find the **general derivative** f'(x) as a new function by using the limit definition.

(a)
$$f(x) = \sqrt{x-4}$$
 $f'(x) =?$
(b) $f(x) = -x^3$ $f'(x) =?$
(c) $f(x) = \frac{x}{x+1}$ $f'(x) =?$
(d) $f(x) = \frac{1}{\sqrt{x}}$ $f'(x) =?$

- 3. For each function f(x) given below, find the equation of the tangent line at the indicated point.
 - (a) $f(x) = x x^2$ at (2, -2)
 - (b) $f(x) = 1 3x^2$ at (0, 1)
 - (c) $f(x) = \frac{1}{2x}$ at x = 1
 - (d) $f(x) = x + \sqrt{x}$ at x = 1

ANSWERS:

- 1. (a) f'(0) = -3 (b) f'(4) = 1/3 (c) f'(3) = -12. (a) $f'(x) = \frac{1}{2\sqrt{x-4}}$ (b) $f'(x) = -3x^2$ (c) $f'(x) = \frac{1}{(x+1)^2}$ (d) $f'(x) = \frac{-1}{2x^{3/2}}$
- 3. (a) y = -3x + 4 (b) y = 1 (c) $y = -\frac{1}{2}x + 1$ (d) $y = \frac{3}{2}x + \frac{1}{2}$