Math Worksheet 1- FUNCTION versus RELATION

Relations

A relation is a set of inputs and outputs, often written as ordered pairs (input, output). We can also represent a relation as a mapping diagram or a graph. For example, the relation can be represented as:

Mapping Diagram of Relation

Graph of Relation

y is not a function of x (x = 0 has multiple outputs)

Functions

A <u>function</u> is a relation in which each input *x* (**domain**) has **only one** output *y*(**range**).

To check if a relation is a function, given a mapping diagram of the relation, use the following criterion:

- 1. *If each input has only one line connected to it, then the outputs are a function of the inputs.*
- 2. The Vertical Line Tests for Graphs

To determine whether y is a function of x, given a graph of a relation, use the following criterion: if every vertical line you can draw goes through only 1 point, y is a function of x. If you can draw a vertical line that goes through 2 points, y is not a function of x. This is called the <u>vertical line test</u>.

In the following graphs:

y is a function of *x* (passes vertical line trest) *y* is not a function of *x* (fails vertical line test)

Function notation

There is a special notation, that is used to represent this situation: if the function name is f, and the input name is x, then the unique corresponding output is

called f(x) (which is read as "f of x ".)

We can also use letters: g(x), h(x) or simply y

Question: What does the function notation g(7) represent? **Answer:** the output from the function g when the input is 7

Question: Suppose f(x) = x + 2. What is f(3)? **Answer:** f(3) = 3 + 2 = 5 (simply substitute number 3 for the variable x)

Question: Suppose f(x) = x + 2. What is f(x+5)? **Answer:** f(x+5) = (x + 5) + 2 = x + 7

Operations with functions

Given f(x) = 3x + 2 and g(x) = 4 - 5x, find (f + g)(x), (f - g)(x), $(f \times g)(x)$, and (f / g)(x).

$$(f+g)(x) = f(x) + g(x) = [3x+2] + [4-5x] = 3x - 5x + 2 + 4 = -2x + 6$$

$$(f-g)(x) = f(x) - g(x) = [3x+2] - [4-5x] = 3x + 5x + 2 - 4 = 8x - 2$$

$$(f \times g)(x) = [f(x)][g(x)] = (3x+2)(4-5x) = 12x+8-15x^2-10x = -15x^2+2x+8$$

$$\binom{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{3x+2}{4-5x}$$

Exercises

1.

State the domain and range of each relation. Then determine whether each relation is a *function*

Graph each relation or equation and determine the domain and range.

5. $\{(2, -3), (2, 4), (2, -1)\}$

7. $\{(-3, 4), (-2, 4), (-1, -1), (3, -1)\}$

Find each value if f(x) = 2x - 1 and $g(x) = 2 - x^2$. 9. f(0) 10. f(12)12. f(-2) 13. g(-1) **6.** {(2, 6), (6, 2)}

11. *g*(4) **14.** *f*(*d*)

Homework

State the domain and range of each relation. Then determine whether each relation is a *function*

Graph each relation or equation and determine the domain and range.

5. x = -1

Find each value if f(x) = -5x + 2 and g(x) = -2x + 3.

X

7. <i>f</i> (3)	8. <i>f</i> (-4)	9. g (-1 2)
10. <i>f</i> (-2)	11. <i>g</i> (-6)	12. f(m - 2)

13. Use the functions below to perform the following operations:

f(x) = 2x g(x) = x - 2 $h(x) = x^2$ k(x) = x/2

k(x) x f(x) g(x) - h(x) f(x) - k(x) h(x) + k(x) $f(x) \div k(x)$ g(x) x h(x)